If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+39w+90=0
a = 3; b = 39; c = +90;
Δ = b2-4ac
Δ = 392-4·3·90
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-21}{2*3}=\frac{-60}{6} =-10 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+21}{2*3}=\frac{-18}{6} =-3 $
| 4(3x+2)=14x | | 100=10+5x20+2x20 | | 2x^2-40+90=180 | | -7p+2p=-20 | | -7x+1=21-8x | | 6(y+4=6y+10 | | 3y+2y=87 | | 2x+4(20-x)=56 | | 9+9z=10z+20 | | .5=10x/50 | | 3x+16-9=2(x+2) | | 7x+8-5x=-3 | | 100=Ix10+5x20+2x20 | | 6/5m-30/5=2/3m+10 | | 1000=9000*x*15 | | 3q-q=32 | | 8x-3=-19+6xX= | | 19+5=-3(2x-8) | | 4u=18.84 | | -8(y+3)=-5y-45 | | 33x+25=33x+2533x+25=33x+25 | | 7x+15=5+7x | | 100=I10=5x20+2x30 | | p+45=90 | | -4(2+5)-3m=35 | | 2(x+26)=4x+3-2x+5 | | x−25=46 | | 2(2x+9)=34 | | -2(x+5)+x=-7 | | 7x+8=5x+12 | | 25=5w-15 | | 8x/7-7=25 |